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Abstract
Guanine-rich single-strandedDNA folds intoG-quadruplexDNA (GqDNA) structures, which play
crucial roles in various biological processes. These structures are also promising targets for ligands,
potentially inducing antitumor effects.While thermodynamic parameters of ligand/DNA interac-
tions are well-studied, the kinetics of ligand interactionwithGqDNA, particularly in cell-like crowded
environments, remain less explored. In this study, we investigate the impact ofmolecular crowding
agents (glucose, sucrose, andficoll 70) at physiologically relevant concentrations (20%w/v) on the
association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with
human telomeric antiparallel-GqDNA.Weutilizedfluorescence correlation spectroscopy (FCS) along
with other techniques. Ourfindings reveal that crowding agents decrease the binding affinity of CV to
GqDNA,with themost significant effect—a nearly three-fold decrease—observedwithficoll 70. FCS
measurements indicate that this decrease is primarily due to a viscosity-induced slowdownof ligand
association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by
smaller crowders, with only small effect observed in presence officoll 70 due to direct butweak
interaction between the ligand andficoll. These results alongwith previously reported data provide
valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved
mechanismof saccharide crowder influence, regardless of variations inGqDNA structure and ligand
bindingmode. This underscores the importance of considering crowding effects in the design and
development ofGqDNA-targeted drugs for potential cancer treatment.

1. Introduction

Complementing thepredominantWatson-Crickdouble
strandedhelix,DNAadopts diverse secondary structures
including G-quadruplex DNA (GqDNA) which is
formed by repetitive sequences of d(TTAGGG)n in the
presence of cations. These structures are particularly
prevalent in both promoter and telomeric regions [1–3].
GqDNA forms characteristic basket-like higher-order
nucleic acid structures composed of two or more planar
G-tetrads which are stabilized by Hoogsteen hydrogen
bonding among the guanine bases in presence of cations.
Interestingly, GqDNA demonstrates substantial topolo-
gical polymorphism, including the conformations based
on intra- and intermolecular configurations of G-tetrads
as well as the cationic environment [4–9]. These

structural features provide GqDNA with critical roles in
various cellular processes such as modulation of chro-
matin structures [10, 11], protection of chromosome
ends [12, 13], regulating recruitment of proteins [14, 15],
transcription [16–18], DNA/RNA loop formations
[19, 20], stimulation of liquid-liquid phase separation
[21, 22], evocation of DNA damage-repair processes
[23, 24], gene expression [25, 26], telomere shortening
[27, 28], and translation [29–31]. A particularly fascinat-
ing feature of GqDNA structures also lies in their natural
tendency to generate specific ligand binding sites. This
unique characteristic ofGqDNAhas emerged as a crucial
point of intense research investigations because of its
promising implications in the cancer treatment.
Researchers synthesized various small molecules that
selectively target and stabilize GqDNA structures, but
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not the duplex-DNA. This strategy led to development
of several small-molecule ligands that are specific to
quadruplexes and are often shown to have anticancer
properties [32–38].

Previous investigations have primarily focused on
elucidating the thermodynamics of ligand/biomole-
cule interactions [39–43]. However, there remains a
paucity of data regarding the kinetics of such interac-
tions, especially for the ligand/GqDNA interactions.
Such kinetic information of ligand/GqDNA interac-
tion can provide valuable insights into the association
and dissociation rates which govern these interactions,
particularly in more realistic cell-like crowded envir-
onments [44]. Earlier reports have emphasized the sig-
nificance of ligand association and dissociation rates in
determining the overall ligand binding affinity to
GqDNA, albeit mostly within dilute solutions [45–47].
However, these findings have not been extensively
translated to more physiologically relevant contexts
such as crowded cellular environment. Our previous
investigation represents the initial step which tried to
address this knowledge gap by examining the impact
ofmolecular crowding on the kinetic rates of a ligand's
interaction with (3+1) hybrid type GqDNA structure
[44].We quantitatively elucidated the effects ofmono-
mer and polymers of saccharide crowders on a ligand’s
forward and reverse reaction rates with hybrid
GqDNA, providing valuable insights into the behavior
of crowder-controls of ligand interaction with
GqDNA [44]. This current study delve into the influ-
ence of these saccharide crowders on the kinetics of
ligand/GqDNA interaction, when the GqDNA con-
formation changes from hybrid to antiparallel and the
ligand binding changes from a π-stacking mode to
groove-binding. Such information is unknown that
how these crowders may influence the kinetics of
ligand binding to a groove formed by an antiparallel-
GqDNA structure.

Actual cellular environment of all living organisms
represents a highly complex and crowded milieu
which is densely populated with a diverse array of bio-
molecules, encompassing nucleic acids, proteins,
lipids, and small molecular crowding agents. The con-
tent of such crowders inside the cytosolic regions of
various cells are different. The concentration can go
up to very high values, such as the concentrations in
Eukaryotic cell range in ∼50–400 mgml−1, ∼300–400
mg/ml in E.coli, nearly 80mgml−1 of solutes found in
blood plasma, ∼270–560 mg ml−1 in mitochondria,
and approximately 400 mg/ml of small and macro-
molecules inside the nucleus [48–50]. Therefore, navi-
gating the intricate and densely populated cell-like
environments to examine the structural, thermo-
dynamic, and kinetic aspects of ligand/biomolecule
interactions present a significant challenge. To cir-
cumvent such difficulties inherent in themore realistic
cellular environment, current research approaches
have adopted a strategy of introducing predetermined
amount of background co-solutes or co-solvents into

the solution, commonly referred to as molecular
crowders. This allows for closer mimics of the cellular
milieu under in vitro experimental conditions [51–64],
which facilitates a more accurate representation to
study ligand/biomolecule interactions, as compared
to studies in traditional dilute solution [44, 63].

The molecular behaviour of various biomolecules
under crowded conditions differs significantly from
that observed in dilute conditions, primarily due to
pronounced disturbances arising from changes in
viscosity, excluded volume effects, water activity,
osmotic stress, environmental polarity, and a variety
of specific or non-specific interactions occurring
within the crowded cellular environment. Such chan-
ges can have potential influence on the structure,
dynamics, and biomolecular interactions [51–64].
Previous studies have indicated that nucleic acids, pro-
teins, lipids, and several enzymes exhibit stabilization
in the presence of certain molecular crowders,
although some crowders can exert destabilizing effects
[44, 53, 58, 59, 65–67]. Speer and co-workers reported
the dominance of chemical reactions on the repulsions
of crowders with the protein complexes which affect
the stability of proteins [68, 69]. One of the studies by
Gai and co-workers have investigated the role of
crowding on the thermal stability and folding/unfold-
ing kinetics of small peptides using dextran 70 and
ficoll 70 as crowders where they found a negligible
effect on the folding kinetics, but observed a viscosity
induced decrement in the helix-to-coil transition of
the peptides [70]. Patra et al unveiled the dynamics
and kinetic rates of GqDNA/RGG peptide interaction
by combining dual-colour fluorescence cross correla-
tion spectroscopy (FCCS) and Förster resonance
energy transfer (FRET)measurements [67]. Weiss and
co-workers have demonstrated the size dependent
enhancement in the late initiation and promoter clear-
ance rates of RNA polymerase in the crowding condi-
tions by using quenching-based single molecule
methods and found a notable deviation from the
assumptions made by scaled-particle theory [71].
There are several other studies available that focused
on the G-quadruplexes and small cosolutes/ligands
interaction to form stable complexes at relevant posi-
tions inside the cells that can inhibit the cancer activ-
ities [36, 37, 72]. Kovermann and co-workers studied
the modulated effects of different sized crowders like
EG, PEG, glucose and dextran on the binding strength
of single-stranded DNA to the cold shock protein B
(CspB) and showed a crowder independent retarda-
tion of association as well as an intractable dependence
of dissociation on the size and chemical properties of
the crowders [60]. These studies have considered both
effects originating from the volume exclusion as well
as soft interactions of the crowders in their in vitro
experimental conditions. One of the in silico study by
Dey et al explored the excluded volume effect on the
target search dynamics of proteins on DNA in a phy-
siological crowding condition and observed the
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competing behaviour of the depletion layer and the
degree of protein-crowder crosstalk. Even if the crow-
ders enhance the overall macro-viscosity of solution,
the depletion layer smoothens the DNA target search
of proteins [61]. Singh and co-workers have shown the
folding as well as stabilization of GqDNA structure
upon binding with hydroxychloroquine (HCQ), an
anti-malarial drug, in cancerous microenvironments
[73, 74]. Schuler and co-workers have depicted the
interaction kinetics of two intrinsically disordered
proteins (IDPs) in the presence of PEGs of different
molecular weights by using single molecule FRET
(smFRET) technique and shown a depletion-induced
acceleration along with viscosity-induced deceleration
of association rates at low and high crowder con-
centrations, respectively [62].

Our group have previously investigated, how a
ligand, cresyl violet (CV), containing benzophenox-
azine group, interacts with hybrid and antiparallel-
GqDNA structures in dilute aqueous buffer [45]. Our
findings revealed that CV binds to (3+1) hybrid
GqDNA mainly through π-π stacking interactions,
while it employs a groove binding mechanism with
antiparallel-GqDNA. Notably, the binding affinity of
CV was stronger for (3+1) hybrid GqDNA as com-
pared to that with antiparallel-GqDNA [45]. It is well-
established that crowded environment can drastically
affect the ligand binding affinity with DNA [44, 63, 75].
In a more recent study, we delved into howwidely used
saccharide crowders (glucose, sucrose and ficoll 70)
influence the binding affinity of CV with (3+1) hybrid
GqDNA [44]. Our observations indicated that the pre-
sence of 20% (w/v) mono- and polysaccharide crow-
ders led to a decrease in association rates of the CV, π-
stacked to hybrid GqDNA, primarily due to the
increased local viscosity of the solution [44]. It is to be
noted here that the 20% (w/v) concentration used is
not only comparable to the concentrations of crowders
found in cell-environment, but also these three sacchar-
ide crowders produce similar volume exclusion in solu-
tion [76, 77]. Hence, the overall steric effects provided
by all three crowders can be considered as similar at a
given concentration, such that one can exclusively
observe the effects of other parameters like viscosity, di-
electric environment and soft interactions on the ther-
modynamics and kinetics of ligand/biomolecule
interactions. The choice of these crowders were also
based on the fact that ficoll 70 and Xenopus laevis egg
extract show similar crowding effects and also that they
are rather inert crowders whose effects are minimal on
theGqDNAstructural change [60, 78].

Building on this knowledge, the current study
aims to explore how these saccharide crowders affect
the interaction kinetics between the CV and GqDNA
especially when the GqDNA conformation changes
from (3+1) hybrid to antiparallel structure and the
bindingmode of ligand changes from π-π stacking to a
groove binding. For this, we have employed dual-
channel fluorescence correlation spectroscopy (FCS),

a high-resolution technique which is capable of mea-
suring correlation of fluorescence fluctuations from
nanoseconds to seconds, operating at the (near)
single-molecule level, aided by othermethods.

The interactions of small-molecular-ligands and
GqDNAcanoccur through a complexpathwayon a rug-
ged energy landscape, where the reactants first come
together to form an intermediate encounter complex – a
pathway that is governed mainly by the diffusion-con-
trolled association and dissociation rates (kd and -k d) of
individual reactants (see figure 1). Theremight be a pos-
sibility of departure of these diffusing reactants from this
intermediate encounter complex, but some of them can
react to form a stable ligand/GqDNA complex through
non-covalent interactions, which is mediated by the
reaction controlled forward and backward reaction rates
(kr and -k r) (figure 1). Since such ligand/GqDNA inter-
actions typically occur at fast timescales which is of the
order of tens to hundreds of microseconds, it is rather
difficult for the existing real-time experimental methods
like surface plasmon resonance (SPR) or stopped-flow
measurements to track these very fast reaction rates
accurately due to their limited time-resolution [79, 80].
Hence, we adopted FCS, whose time resolution can go
down to picoseconds. Using FCS we collected the corre-
lation of fluorescence fluctuations of the ligand (CV),
arising from the ligand’s diffusion in-and-out of a very
small observation volume (∼fl) and interaction with
GqDNA during their dwell time within the observation
volume. Applying appropriate model functions, we
extracted the kinetic parameters from the reaction cou-
pled diffusive correlation curves. From the steady state
fluorescence quenching experiments of CVwith varying
concentrations of GqDNA, we found a reduction in the
binding affinity ofCV to antiparallel-GqDNA in the pre-
sence of 20% (w/v) glucose, sucrose and ficoll 70, as
compared to that in pure buffer solution. The binding
affinity of CV to antiparallel-GqDNA decreases by ∼3
fold in the presence of the larger-sized crowder ficoll 70.
Utilizing the steady state and FCS data, we obtained the
quantitative information of all the reaction rates and
found a gradual decrease in the overall association rates
( +k ) as we go from pure buffer to 20% (w/v) ficoll 70.
However, the overall dissociation rates remain nearly
unchanged for smaller glucose and sucrose crowders,
albeit a small increase in the dissociation rate is observed
in the presence of ficoll 70. This decrease in overall asso-
ciation of CV to GqDNA is found to be mainly con-
trolled by the diffusive reaction rates, kd and -k d as well
as the decrease in the reaction controlled forward reac-
tion rate k .r Conversely, the reaction-controlled dis-
sociation rates, -k r (the rate-determining step) nearly
remain unchanged in presence of the smaller crowders,
but show a marginal increase in the presence of bigger
ficoll 70, although the error bars of these extracted values
remain high. This study, in continuation to our previous
study [44] confirms that the chemical properties and/or
size of saccharide crowders affect the ligand binding affi-
nity to a groove of antiparallel-GqDNA, akin to the π-π

3

Methods Appl. Fluoresc. 12 (2024) 045002 PAlam et al



stacking interactions of same ligand with the (3+1)
hybrid GqDNA. Such interaction kinetics are mainly
controlled by the viscosity-induced deceleration of the
association rates, while the dissociation rate is less affec-
ted by these crowders. These results suggest that the
crowders induce analogous effects on ligand/GqDNA
complex formation in both situations where the ligand
bindingmode and the topology of GqDNA are changed.
Although, the degree of this impact differs based on the
ligand's intrinsic binding affinity forGqDNAof different
structures, the underlying mechanism of interaction
seems to remain remarkably similar. This holds true
regardless of the ligand's mode of interaction; groove
binding to antiparallel-GqDNA or π-π stacking interac-
tions to (3+1)hybridGqDNA.

2. Results and discussion

2.1. Circular dichroismdata showno effect of
crowders on structure of antiparallel-GqDNA
Circular dichroism (CD) spectroscopic analysis vali-
dates the formation of a basket-type antiparallel-
GqDNA structure of 22-mer human telomeric DNA
sequence, 5′-AG3TTAG3TTAG3TTAG3–3′ in the pre-
sence of 100 mM NaCl (see Supplementary material
for methods and materials). The CD spectra of
antiparallel-GqDNA in absence and presence of the
crowders are shown in figure 2. The characteristic
spectral signatures are evident, with two positive peaks
at ∼250 nm and ∼295 nm, accompanied by a well-
defined negative peak at ∼265 nm, consistent with
previous observations comfirming the formation of
antiparallel-GqDNA [45]. Importantly, the addition of
all three saccharide crowders does not induce any

significant perturbation to the overall antiparallel-
GqDNA topology. However it was found earlier that
higher molecular weight saccharide crowder ficoll 70
marginally affects the (3+1) hybrid GqDNA structure
[44]. This finding suggests that at physiologically
relevant concentrations, these saccharide crowders
likely have minimal impact on the antiparallel-
GqDNA structure. This observationmay also translate
to the cellular milieu, as similar results were obtained
when using Xenopus laevis egg extract, a complex
crowding agent that mimics the crowded intracellular
environment [78].

2.2. Reduction in binding strength of ligand to
antiparallel-GqDNA inpresence of crowders
The crowded cellular milieu is characterized by the
presence of a diverse range of biomolecules, encom-
passing both small- andmacro-molecules. The invest-
igation of ligand binding to GqDNA in solution
should ideally incorporate these ubiquitous crowders,
as their presence can demonstrably influence the
observed stability and binding affinity of the ligands
[44, 51, 52, 63]. The small benzophenoxazine-core
based ligand, CV investigated here displays intriguing
fluorescence properties. In solution, CV exhibits high
fluorescence intensity, however, upon complexation
with GqDNA its fluorescence is efficiently quenched
[45]. Notably, benzophenoxazine derivatives have
been found to down-regulate the c-KIT expression in
gastric cancer cells when binds with GqDNA, suggest-
ing their potential as therapeutic agents [33]. Our
previous study explored the CV binding with (3+1)
hybrid GqDNA structure in the presence of saccharide
crowders [44], however it is still unknown how

Figure 1. Scheme depicting the ligand (CV) andGqDNA interaction kinetics in the presence of crowders. The ligand/GqDNA
complex formation occurs where the reactants (ligand andGqDNA) diffuse freely to interact with each other to form an intermediate
encounter complexwhich is controlled by the diffusive rate constants (kd and -k d). This is followed by tight binding of the ligand
withGqDNA through groove binding,mediated by reaction-controlled rate constants rates (kr and -k r ). All these rate constants
define the overall association and dissociation rates, +k and -k .
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saccharide crowders affect the interaction between CV
and antiparallel-GqDNA in its groove binding mode.
The highly fluorescent state of CV gets quenched upon
groove binding with GqDNA due to efficient electron
transfer from electron rich guanines to the electron
deficient CV [45]. We have kept the concentration of
CV constant at ∼10 nM and performed a titration
series by varying the concentration of preformed
antiparallel-GqDNA up to 60 μM. It can be seen from
figure 3 that the relative fluorescence intensity of CV,
peaked at ∼626 nm, decreases gradually with the
addition of GqDNA in pure buffer solution as well as
in the presence of 20% (w/v) glucose, sucrose and
ficoll 70 (figure 3(A)–(D)). However, the extent of
quenching in all the cases are found to differ from each
other which may arise from the induced local soft
interactions of the crowder molecule that hinders the

rate of electron transfer from guanines to CV. By
analysing the graph of relative fluorescence quenching
versus concentration of GqDNA and by fitting the
binding curve with equation S1 (figure 3(E)), we found
the binding constants (K) of CV with GqDNA in the
absence and presence of glucose, sucrose and ficoll 70
differ appreciably which are plotted in a bar-graph in
figure 3(F) and tabulated in table 1. This data reveals a
modest alteration in the binding constant upon
introduction of glucose and sucrose. However, a more
substantial decrease is observed in the presence of
ficoll 70, with binding constants diminishing by
roughly 3-fold, as compared to that in pure buffer.
These findings corroborate prior observations, where
binding strength of small ligands with DNA in
presence of crowding conditions drastically decreases
[44, 63, 75]. Interestingly, the extent of the decrease in

Figure 2.CD spectra of antiparallel-GqDNA formed by 22-mer human telomericDNA sequence in the presence ofNa+ ions, as well
as in the absence and presence of 20% (w/v) glucose, sucrose and ficoll 70. Data show typical signature of formation of antiparallel-
GqDNA structure in all conditions. It is observed that glucose, sucrose andficoll 70 do not affect the antiparallel-GqDNA structure.

Figure 3.Relative quenching of fluorescence spectra of CVwith increasing concentration of antiparallel-GqDNA in (A) buffer, (B)
20% (w/v) glucose, (C) 20% (w/v) sucrose and (D) 20% (w/v)ficoll 70. (E)The relative fluorescence quenchingwithGqDNA
concentration, alongwithfits using equation S1. (F)Bar-graphs plotting themeasured binding constants of CV toGqDNA from the
fits to data in (E), in the absence and presence of the crowders. Error bars are obtained from triplicatemeasurements.
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binding affinity for CV to antiparallel-GqDNA is less
pronounced as compared to that observed with (3+1)
hybridGqDNA [44].

To isolate the effect of GqDNA binding on the
fluorescence properties of CV, we also measured con-
trol spectra of CV in the presence of crowders only (in
the absence of GqDNA) as well asmonitored the inter-
action of Cy3-labeled-GqDNA with ficoll 70 (see sup-
plementary materials). This step aimed to determine if
the observed fluorescence quenching stemmed pri-
marily from ligand interaction with the antiparallel-
GqDNA groove or induced by the crowders, or if there
is any direct interaction of bigger crowder (ficoll 70)
and the GqDNA. Interestingly, we observed that there
is as such no interaction occurs between the GqDNA
and ficoll 70, as exemplified by the nearly unchanged
fluorescence spectra of Cy3-GqDNA in the presence of
varying concentration of ficoll 70 (see supplementary
materials, figure S2). However, ∼2-fold enhancement
in the fluorescence signal of CV is observed upon addi-
tion of the crowders in the absence of GqDNA
(figure S3A), in contrast to much stronger quenching
(∼5 fold) of CV fluorescence upon binding to GqDNA
(figure 2(A)). This phenomenon can be attributed to
changes in the surrounding environment, induced by
the crowders, possibly due to variations in dielectric
constant and/or viscosity and/or weak interaction of
CV with crowders. These compelling observations
suggest that the relatively higher quenching of CV
fluorescence observed above is mainly linked to its
groove binding interaction with antiparallel-GqDNA,
potentially facilitating electron transfer from guanine
residues to the ligand molecule. This is also because,
we performed fluorescence titration of CV (10 nM)
with varying concentration of the biggest crowder,
ficoll 70 in the absence of GqDNA and found that
the binding of CV to ficoll 70 alone is much weaker
(∼102 M−1, see figure S3B), as compared to that
observed for CV binding to GqDNA in the presence of
crowders (∼105M−1, see table 1).

Notably, x-ray crystallographic study by Neidle
and co-workers unraveled that there is one groove,
which is long and narrow, contains stable spine-of-
hydration within antiparallel-GqDNA, which is
equivalent to, but structurally different than those
found in the minor groove of duplex-DNA [81]. Even
though it is documented that binding of ligands such
as TMPyP4, BMVC,Hoechst 33258, etc to quadruplex
DNA accompany re-arrangement of groove-bound

water molecules [52, 82], it is not known how crowd-
ing agents may actually affect the binding affinity of
ligands, disturbing such spine-of-hydration within the
groove of antiparallel-GqDNA. The above steady-state
fluorescence data of CV binding to human telomeric
antiparallel-GqDNA clearly show that there are local
effects on the destabilization of the ligand binding
inside the groove of GqDNA by the saccharide crow-
ders, where the re-arrangement of groove-bound
watermay play a crucial role.

2.3. Fluorescence correlation spectroscopy (FCS)data
2.3.1. Determination of the kinetic parameters of CV/
GqDNA interactions
The involvement of both diffusion and reaction
kinetics in the ligand/GqDNA interactions make it
difficult to get the quantitative information of indivi-
dual reaction rates because of their very fast and broad
timescale [44–47]. Although one can measure the
overall binding constant of ligand to GqDNA by using
the real time experimental techniques (like SPR,
stopped-flow method, etc) the time resolution of
which can only go down to ∼1 ms [46, 79, 80, 83].
Hence, measuring the association and dissociation
processes which occur in tens-to-hundreds of micro-
seconds time-scale become difficult using these
real-time techniques. So, to gather the quantitative
knowledge of themolecular processes occurring in the
faster time-scales, we used a home-built FCS setup
which uses a laser beam that under-fills the back-
aperture of a high numerical aperture objective to
create a large confocal volume, such that reaction and
diffusion correlations remain separated in time
[44–47]. In FCS, a tiny observation volume (∼fl) is
created by the tight focusing of a laser beam inside the
sample and then fluorescence fluctuations from a
probe are correlated, which arise from the ON and
OFF state of the probemolecule due to its diffusion in-
and-out of the observation volume or due to any
chemical reaction that changes the fluorescence state
of the probe [44–47]. From these correlation curves,
one can extract the information about diffusion and
reaction rates of the interaction of the fluorescent as
well as non-fluorescent molecules with GqDNA
[44–47].

Previously, the ligand induced equilibration of
unstructured and unfolded form of GqDNA towards
the equilibrated folded conformations were investi-
gated through FCS measurements [84]. FCS has
important applications in exploring the photo-
induced charge transfer and charge recombination
processes in DNA from the fluorescence blinking of
ligands [85], pH-dependent topological alteration of
i-motif DNA [86], discernment ofWatson-Crick base-
pairs from the damaged ones by the auto-flipping
dynamics of the mismatched bases [87]. It can probe
the structural changes in proteins [56, 57, 88–92]
along with a special ability to distinguish between the

Table 1.Binding constants of CVwith antiparallel-GqDNA
structure obtained fromdata infigure 3(E) at different crowding
conditions.

Systems Binding constantK (×105M−1)

CV/GqDNA inBuffer 4.12 (±0.31)
CV/GqDNA in 20%Glucose 3.59 (±0.25)
CV/GqDNA in 20%Sucrose 2.41 (±0.18)
CV/GqDNA in 20%Ficoll 70 1.32 (±0.12)
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normal and hyperactivated Ras-signaling in patho-
genic fungal-membranes [93]. This technique can
measure the population of amyloid-protein aggregates
[94, 95] and calculate the detailed kinetic rates of
ligand-macromolecule interactions [44, 96]. Interest-
ingly, FCS can also gauge the size distribution and
polydispersity factors of microemulsion droplets
(MEDs) in solutions and predict the formation kinet-
ics of nanorods inside the microemulsion droplets
(MEDs) in a step-wise manner, just to mention a few
[97–99].

Using our home-built dual channel FCS setup, we
excited the CV/GqDNA samples by a 532 nm laser
beam in an under-filled objective back-aperture which
creates a large confocal volume towell separate the dif-
fusion and reaction components in time [44–46]. To
work at a (near) single molecule level, very low con-
centration (<1 nM) of the fluorescent ligand (CV)was
taken, while we varied the concentration of GqDNA
from zero to 5 μM and collected the reaction-coupled
diffusion correlation curves in the absence and pre-
sence of 20% (w/v) of glucose, sucrose and ficoll 70.
Figure 4 plots the GqDNA concentration dependent
correlation curves for each of these CV/GqDNA sys-
tems in the absence and presence of crowders, along
with their fits. The distinct features can be seen from
the correlation curves in which the diffusion dynamics
occurring above ∼600 μs, whereas the CV/GqDNA

interactions kinetics arise below ∼600 μs. Interest-
ingly, we found that as the concentration of GqDNA is
increased, there is slowing down of diffusion time of
the CV/GqDNA complex as well as swift in the reac-
tion time. This suggests a rise in the formation of the
complex in solution with increasing concentration of
GqDNA [45]. There is also a rise in reaction amplitude
of the CV/GqDNA interaction as we increase the con-
centration of GqDNA [45]. In presence of all the crow-
ders taken here, the pattern of the correlation curves
remains similar except some decrease in the extent of
reaction amplitude change as well as the increase of
diffusion of the complex due to the varied viscosity
induced by the different crowders.

Assuming the formation of the stable CV/GqDNA
complex to be a single-step biomolecular reaction
where the degree of interaction between CV and
GqDNA is controlled mainly by the association ( +k )
and dissociation ( -k ) rates, the interaction can be
interpreted as,

( )
+ -
+

-

k

k

CV GqDNA CV GqDNA

1

The binding strength is then quantified by the
equilibrium binding constant (K ) of CV with GqDNA
which is defined as the ratio of +k to -k i.e.,

Figure 4.Normalized fluorescence correlation curves of CVwith varying concentrations of antiparallel-GqDNA in (A) buffer, (B)
20%w/v glucose, (C) 20%w/v sucrose and (D) 20%w/vficoll 70. Plots also include the (global)fits to the data-sets using equation (3),
alongwith the residuals-of-fits. The correlation data show typical characteristics of GqDNAconcentration dependent change of
reaction-time, reaction-amplitude and diffusion time. See figure S2 for the variation of reaction time and amplitude and table 2 for the
estimated kinetic parameters.
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( )= +

-
K

k

k
2

We have performed a global data analysis of the
above correlation curves obtained from FCSmeasure-
ments by using the following equation which takes
care of themolecular events like diffusion and reaction
of CV with GqDNA when they pass through the small
observation volume [45, 46, 96].
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Here, 〈N〉 is the average number of ligands (CV)
within the observation volume, t̅D is the average time
th CV or CV/GqDNA complex takes to diffuse
through the observation volume, s is instrument
correction factor, AR is reaction amplitude and tR is
the reaction time that can be written in terms of the
rate constants as [45, 46, 96],

[ ] ( [ ])
( )

t =
+

=
++ - -k GqDNA k k K GqDNA

1 1

1

4

R

In the global fitting analysis, s was set as a fixed glo-
bal parameter, whereas t̅ ,D AR and tR were theGqDNA
concentration dependent free parameters (see figure S4
in supplementary materials for the GqDNA concentra-
tion dependent variations of AR and tR). In our pre-
vious work, we successfully employed the modified
equation including a stretched factor (β) in the reaction
time, tR to analyse FCS data for the CV/(3+1) hybrid
GqDNA system [44]. However, this approach is not
directly applicable here. Unlike the (3+1) hybrid struc-
ture where CV binds to the G-tetrad in various orienta-
tions through π-π stacking interaction, the current
study focuses on an antiparallel-GqDNA structure
where CV binds specifically to the groove and one may
not expect to observe the different orientation of the
ligand bound to such narrow groove created by anti-
parallel-GqDNA. In fact, use of such stretched factor
(β) in equation (3) did not improve the fitted results,
suggesting a single mode of groove-binding of CV to
antiparallel-GqDNA.

Table 2 summarizes the association ( +k ) and dis-
sociation ( -k ) rate constants obtained from the FCS
data for CV/GqDNA interactions in the absence and
presence of crowders. A key observation from this data-
set is that the crowder-induceddecrease in binding con-
stants is primarily attributed to a deceleration of the
association rate constant ( +k ). This +k value exhibits a
nearly three-fold decrease upon transitioning from
pure buffer to a 20%ficoll 70 solution. Interestingly, the
dissociation rate constants ( -k ) remain largely unaf-
fected across all conditions, except a very small increase
(∼1.1 times) in the presence of ficoll 70. These findings
alignwell with our previous observations, where amore
pronounced decrease (approximately five-fold) in the

association rate constant of CV to hybrid GqDNA
structure was observed in presence of ficoll 70 [44]. It is
noteworthy that in our earlier study with the (3+1)
hybrid GqDNA, CV interacted via a stronger π-π stack-
ing interaction with the G-tetrads, compared to the
groove binding observed here with the antiparallel-
GqDNA. This suggests that regardless of the distinct
binding modes (π-π stacking versus groove binding)
employed by CV for (3+1) hybrid and antiparallel-
GqDNA, the crowders mainly produce the viscosity-
induced deceleration of association rate to control the
overall binding affinity of the ligand to GqDNA, with
minimally impacting the ligand dissociation rates for
bothGqDNAstructures.

These findings present a unique perspective on
ligand/GqDNA interactions within crowded environ-
ments. Notably, these results suggest that once a ligand
establishes a binding site with GqDNA (be it anti-
parallel or hybrid conformation [44]), through either
rapid or slower association, the presence of differently
sized crowders exerts minimal influence on the
ligand/GqDNA complex itself to induce the ligand
dissociation rates. This observation is manifested in
the negligible impact of crowders on the activation
barrier for ligand dissociation. While the overall bind-
ing affinity of the ligand to GqDNA is demonstrably
decreased, the dissociation process appears remark-
ably unaffected by the crowded environments, espe-
cially in the presence of smaller crowders, albeit a
minimal effect exerted by the much bigger ficoll 70
crowder. Since the volume exclusion or the overall
steric factor induced by all the three crowders at 20%
(w/v) concentration remains almost similar [76, 77],
the above effects might be originating from the local
interactions of crowders with the CV/GqDNA com-
plex [76, 77].

2.3.2. Regulation of binding strength of ligand to
GqDNA by viscosity-induced diffusive and reaction-
controlled forward kinetic rate constants
The reduction in the binding affinity of CV with
GqDNA in the presence of crowders as compared to
that in pure buffer solution is mainly governed by the
fall in association rates, +k . To know quantitatively
how these association and dissociation rates are
affected directly by the crowders, we assumed these
interactions to occur in a three-state model where the
interacting entities come closer to each other to form
an intermediate encounter complex which is governed
mainly by diffusion of reacting species (kd and -k d). In
the solvation shell of GqDNA, CV binds in the groove
to form the final stable CV/GqDNA complex which is
regulated by the reaction-controlled forward (kr) and
reverse ( -k r) reaction rates (see figure 1).

With a prior knowledge of the size (hydrodynamic
radii) and diffusion constants of both ligand and
GqDNA which are obtained from the FCS measure-
ments (see supplementary material), the Smo-
luchowski equation gives an expression for diffusion-
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Table 2. Ligand binding and kinetic parameters estimated from steady-state fluorescence and FCSmeasurements for CV/antiparallel-GqDNA interactions.

SystemCV/GqDNA K (×105M−1) +k (×109M−1s−1) -k (×103 s−1) kd (×109M−1s−1) -k d (×109 s−1) Kenc (M
−1) kr (×109 s−1) -k r (×103 s−1) Kreac (×105)

In Buffer 4.12 (±0.31) 3.19 (±0.29) 7.75 (±0.41) 11.67 (±0.72) 0.94 (±0.09) 12.41 (±1.41) 0.35 (±0.06) 10.61 (±2.23) 0.33 (±0.04)
In 20%Glucose 3.59 (±0.25) 2.33 (±0.24) 6.50 (±0.50) 5.66 (±0.56) 0.46 (±0.06) 12.30 (±2.01) 0.32 (±0.08) 11.03 (±3.35) 0.29 (±0.05)
In 20%Sucrose 2.41 (±0.18) 1.96 (±0.21) 8.12 (±0.61) 5.60 (±0.52) 0.45 (±0.05) 12.44 (±1.80) 0.24 (±0.05) 12.63 (±3.30) 0.19 (±0.03)
In 20%Ficoll 70 1.32 (±0.12) 1.10 (±0.12) 8.60 (±0.48) 1.99 (±0.18) 0.16 (±0.02) 12.44 (±1.92) 0.20 (±0.06) 18.18 (±6.38) 0.11 (±0.02)
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controlled association rate (kd) as [100],

( )( )
( )

p= + +k D D Rh Rh N4

5
d CV GqDNA CV GqDNA av

Where, DCV and DGqDNA are the diffusion coefficients
and RhCV and RhGqDNA are the hydrodynamic radii of
the ligand (CV) and GqDNA, respectively, and Nav is
the Avogadro number.

To account for the effects of crowding on ligand/
GqDNA interactions, the solution (micro) viscosity
was determined in the presence of various crowding
agents using the diffusion time of standard Rh6G in
water as a viscosity reporter (see figure S5 in the sup-
plementary material). Subsequently, the size (hydro-
dynamic radius) of the ligandwas assessed using Rh6G
as a reference standard (see figure S6 in the supple-
mentary material). By leveraging the solution viscosity
data, the diffusion constants of CV were calculated for
each crowder condition. The size of the antiparallel-
GqDNA was obtained from prior sedimentation
experiments [101]. This value, along with the Stokes-
Einstein equation, was then employed to calculate the
diffusion constant of antiparallel-GqDNA in the pre-
sence of crowders. In this case we assumed that the size
(Rh) of GqDNA does change in respective crowder
solutions, which is also suggested by the CDmeasure-
ments showing a no change in the topology of anti-
parallel GqDNA (see figure 2). By using the values of
diffusion coefficients and sizes (table S1 in supplemen-
tary materials) of the ligand and GqDNA in respective
solutions, kd values are calculated from equation (5)
and tabulated in table 2 for each systems.

For the dissociation of the ligand from the biomo-
lecules, the ligand and GqDNA should diffuse apart
from each other by a minimum distance equal to the
size of the complex. From the time taken by the ligand
and biomolecule to diffuse apart the minimum dis-
tance, one can calculate the dissociation rate ( -k d) of
encounter complex. Thus, the equilibrium binding
constant of the encounter complex (Kenc = kd/ -k d)
can be modelled as the volume occupied by the ligand
andGqDNA [96]. Hence one canwrite,

( )
( )

( )
( )

p
=

+

=
+

+

-k
k

Rh Rh N

D D

Rh Rh

4
6

d
d

CV GqDNA av

CV GqDNA

CV GqDNA

3

2

Among many intermediate encounter complexes,
some of them can form a stable (inclusion) complex
which is regulated by the reaction-controlled forward
(kr) and reverse ( -k r) reaction rates (see figure 1). So,
the equilibrium constant for the formation of this
stable complex can bewritten as,

( )=
-

K
k

k
7reac

r

r

Separating the whole equilibrium process into a
pre-equilibrium between the freely diffusing species
and the encounter complex as well as an inclusion

equilibrium between the encounter complex and final
stable complex, we can write the overall binding con-
stant, = ´K K K .enc reac With the steady state
assumption, we have calculated the binding constants
of all the systems at equilibrium. Expressing the bind-
ing constant, = ´K K Kenc reac and utilizing the
values of binding constants (K ) and diffusion limited
equilibrium constant of encounter complex, Kenc as
∼12.4 M−1 (see table 2), the Kreac is found to be in
the order of ∼104 for all systems studied here, which
clearly suggest that the forward rate(kr) for the stable
complex formation is much higher than the dissocia-
tion rate ( -k r) of the ligand from the complex. This
must be the case as the calculated binding constants
are in the order of ∼105 M−1, which means the ligand
spend most of its time in bound state, suggesting the
dissociation rate ( -k r) to be much smaller, as com-
pared to the other rates, which is the main rate deter-
mining step. Thus, for a very low unbinding rate ( -k r)
of the ligand from the stable complex which is formed
by the groove binding of ligand to GqDNA, the faster
reaction-controlled association rates can be expressed
as [96].

( )=
´
-

+ -

+
k

k k

k k
8r

d

d

From the table 2 and figure 5 which include the
quantitative values of all the rate constants and their
bar-graph representations, respectively, the ∼3 times
decrease in the binding constant of CV to GqDNA in
the presence of ficoll 70 in comparison to that in pure
buffer is attributed mainly to the reduction of associa-
tion ( +k ) rates. The changes in this overall +k are con-
trolled by the diffusive (kd and -k d) and reaction-
controlled forward rate k .r The monotonous decrease
in the overall association rate ( +k ), as we go from pure
buffer to 20% (w/v) of ficoll 70, is mainly due to the
gradual decrement in both the diffusion-controlled
rates (kd and -k d) and reaction-controlled forward rate
(kr). However, there is effectively no change in the over-
all dissociation ( -k ) for the smaller glucose and sucrose
crowders, which is the rate determining step of the
interaction; however, a small increment in the dissocia-
tion rate is observed in case of higher molecular weight
ficoll 70 crowders (see figure 5(H)). Although there is a
significant fall in kd and -k d values, their ratio (Kenc =
kd/ -k d)which is the equilibrium constant of formation
of the intermediate encounter complex, does not
change in presence of the crowders in comparison to
that in dilute solution. So, even if there is viscosity-
induced reduction in the individual diffusion-con-
trolled kinetic rates, their equilibrium constant remains
similar (see figure 5(F)). The rates governing the forma-
tion of the final stable complex from the pre-equili-
brated encounter complex, the reaction-controlled
association (kr) decrease as one transit from dilute con-
dition to that in ficoll 70. Conversely, there is effectively
no change in the reaction-controlled dissociation rates
( -k ,r the rate-determining step) in the presence of
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smaller sized crowders. However, in the presence of the
higher branched molecular crowder ficoll 70, we
observe a slight increase in the -k .r This incrementmay
arise from ficoll 70 coming into closer proximity of CV
and interacting with it when it is bound within the
groove of the antiparallel-GqDNA structure. In fact, the
binding constant of CV to ficoll 70 in the absence of
GqDNAhas been found to be∼102M−1 which ismuch
lower than those of CV binding to GqDNA (∼105M−1)
in the presence of the crowders. Although, the strength
of interaction of CV/ficoll 70 is much smaller than that
of CV/GqDNA, the ficoll may still influence the
unbinding rates of the ligand through soft local interac-
tions. However, the nature and origin of this soft inter-
action needs further investigations. This phenomenon
was not observed in the earlier study where CV bound
to theG-tetrad viaπ-π stacking interaction in the (3+1)
hybrid structure [44]. Collectively, these observations
suggest that the chemical properties and/or size of the
(saccharide) crowders do not modulate the groove
binding interaction between CV and antiparallel-
GqDNA, except mildly by the branched ficoll 70 crow-
der. The stark contrast between the significant altera-
tion in kr and the relatively unaltered -k r translates to a
decrease in the equilibrium constant (Kreac = kr/ -k r)
for the formation of the final stable complex with
increasing crowder size. Similar trendswere observed in
our previous study, albeit with a more pronounced
effect [44]. This implies that these crowders exert

comparable effects in both the scenarios, irrespective of
whether CV interacts via groove binding to antiparallel-
GqDNAorπ-π stacking interactions with (3+1) hybrid
GqDNAstructures [44].

Previous stopped-flow study showed the viscosity-
driven retardation in the association of ssDNA and
cold shock protein B (CspB) to be independent of the
crowders, whereas the dissociation rates depend
strongly on the size and chemical nature of the crow-
ders [60]. Another exciting study by Schuler and co-
workers unravelled the effect of molecular crowding
on the interaction between two intrinsically dis-
ordered proteins (IDPs) [62]. They considered the size
and concentration dependencies of ethylene glycol
and its polymers of different molecular weights on the
folding/unfolding dynamics of two IDPs by employ-
ing single molecule Förster resonance energy transfer
(smFRET) technique [62]. At higher concentration
range (typically, more than 100mgml−1 or 10% (w/v)
of all the crowders), they found a viscosity-induced
deceleration of the association rates, as well as a deple-
tion-induced acceleration of the association of the
interacting IDPs in the lower concentration ranges
which was predominant in the case of PEGs of higher
molecular weights [62]. In our recent investigation, we
elucidated the impact of mono- and polysaccharide
crowders, including glucose, sucrose, and ficoll 70, on
the binding affinity of CV with (3+1) hybrid GqDNA.
These small and macromolecular crowders were

Figure 5.Bar-graphs showing the relative changes of the kinetic parameters; (A) k+, (B) k-, (C) k+/k-, (D) kd, (E) k-d, (F)Kenc, (G) kr,
(H) k-r, (I)Kreac obtained from the FCSmeasurements. Data show that the diffusion-controlled association rates are the dominating
factors which aremodulated by the crowder-induced viscosity change. The dissociation rates of the ligand from the stable complex
remain nearly unchanged in the presence of the smaller sized crowders, with slight increment observed in the presence officoll 70. The
error bars were obtained from triplicate sets of data.
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observed to modulate the extent of ligand binding
through a viscosity-induced deceleration of associa-
tion rates. Importantly, the dissociation rate constant
of the CV/hybrid GqDNA complex remained rela-
tively unperturbed, signifying the preservation of
complex stability in the presence of these crowders
[44]. The present findings regarding viscosity-driven
effects demonstrate a significant concordance with
prior observations, particularly at higher crowder con-
centrations of 20% (w/v). However, further explora-
tion is necessary to gain a deeper understanding of the
intriguing phenomena associated with depletion
effects exerted by these crowders at lower concentra-
tion regimes. Interestingly, our data consistently
revealed that irrespective of the distinct binding
modes employed by CV, i.e., π-π stacking with (3+1)
hybrid GqDNA [44] and groove binding with anti-
parallel-GqDNA (present study), the saccharide crow-
ders exhibit minimal influence on ligand dissociation
from the GqDNA structures. The overall decrease in
binding affinity of ligand toGqDNA in presence of dif-
ferent molecular weight saccharide crowders is mainly
controlled by the viscosity-induced deceleration of
association rates, given that the overall volume exclu-
sion and steric effects exerted by all three saccharide
crowders used here remain similar. These results sug-
gest that the crowders can affect the viscosity-induced
changes in the ligand association to GqDNA, but their
effects on the unbinding of the ligand from anti-
parallel-GqDNA remain minimal, similar as observed
earlier for π-stacking interaction of ligand with hybrid
GqDNA structure [44]. A cartoon showing the possi-
ble ligand diffusion and subsequent association with
GqDNA is presented infigure 6.

3. Conclusion

There are several in vitro as well as in silico studies
available on the thermodynamic aspects of ligand/
GqDNA interactions in the absence and presence of
different macromolecular crowders that mimic the cell-
like environments. However, the detailed estimation of
all the kinetic rates that control the ligand binding
affinity with GqDNA in absence and presence of
different molecular crowders remained sparse till date.
Our current study focused on the various kinetic
parameters that affect the binding of a benzophenox-
azine-core based ligand, cresyl violet (CV) with the
human telomeric antiparallel-GqDNA structure in the
absence and presence of macromolecular crowders like
glucose, sucrose and ficoll 70 at a physiological crowder
concentration. Using our home-built FCS setup, aided
by other spectroscopic techniques, we calculated all the
diffusion as well as reaction-controlled kinetic rates of
CV/antiparallel-GqDNA interaction in the absence and
presence of crowders at a (near) single molecule level.
Our prior investigations have focused on elucidating the
effects of saccharide crowders on the kinetic parameters
associated with the interaction between CV and hybrid
GqDNA. The current study extends this knowledge base
by experimentally demonstrating that these same crow-
ders modulate the binding affinity of CV towards
antiparallel-GqDNA.Thismodulation is predominantly
attributed to a viscosity-induced decrease in the associa-
tion rate constant ( )+k . Interestingly, the dissociation
rate constant ( )-k remains largely unaffected, mirroring
observations from our previous work on (3+1) hybrid
GqDNA, albeit with a more pronounced effect.
These findings compellingly suggest that the crowders
exert comparable influences on the ligand/GqDNA

Figure 6.Cartoon showing the diffusion-controlled associationwhich forms the (intermediate) encounter complexwhere the ligand
comeswithin the solvation shell of GqDNA, followed by the association of ligand into the groove binding-modewith antiparallel-
GqDNA.
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interaction kinetics irrespective of the distinct binding
modes employed by CV with GqDNA i.e. groove
binding with antiparallel-GqDNA versus π-π stacking
interactions with (3+1) hybrid GqDNA. To achieve a
comprehensive understanding of how various molecu-
lar crowders influence ligand/GqDNA binding interac-
tions, further in vitro studies employing advanced
spectroscopic techniques are essential. Additionally, in
silico investigations utilizing enhanced sampling meth-
ods can provide valuable insights into the underlying
molecular mechanisms governing these interactions.
This work, in conjunction with our prior study serves as
a foundational steps towards a more comprehensive
exploration of ligand binding/unbinding processes with
GqDNAwithin crowded environments. Elucidating the
key mechanistic parameters that direct these interac-
tions holds significant potential for the rational scheme
and development of possible antitumour drugs which
may target the GqDNA structures in real cellular
crowded environment.
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